ulm university universität

Menopau

¹Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany; ²Department of Gynecology and Obstetrics, Hospital of the Ludwig-Maximilians-University, Munich, Germany; ³Université Paul Sabatier Toulouse III, Toulouse, France.

Background

Differences in ER- and HER2-expression on metastases compared to the primary tumor (PT) are a known phenomenon and may have clinical implications in respect of targeted systemic treatment approaches. The aim of this study was to evaluate both ER- and HER2-status on disseminated tumor cells (DTCs) in the bone marrow (BM) of patients (pts) with early breast cancer (EBC; see table 1) and to compare these with the corresponding PT.

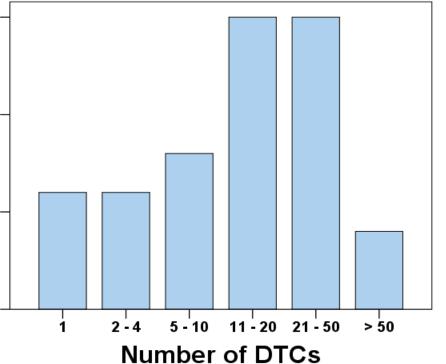
Methods

BM aspirates were obtained at the time of first surgery. After Ficoll enrichment for mononuclear cells two cytospins with 10⁶ BM cells were evaluated for ER-, HER2- and cytokeratin (CK) -expressions simultaneously by immunocytochemistry using a triple fluorescence staining method with antibodies directed against human ER (secondly labeled with Cy3, red), HER2 (Coumarin-AMCA, blue) and CK (DyLight488, green). The manual analysis was conducted using a computerized fluorescence microscope (Axioskop, Zeiss, Germany). Criteria for CKand HER2-positivity were the ring-like appearance of the respective membrane stainings and for ER-expression a nuclear staining (see figure 1). Only pts with the detection of CK positive cells (DTC+) and known ER- and HER2-status of the PT (n= 54) were selected for this analysis.

Phase	CK	ER	HER2	
		7		MCF-7
Y	C		7	SK-Br-3
	0	82		Patient 1
	00	1		Patient 2
AS -	\bigcirc		Л	Patient 3
jo .		F	7	Patient 4

Figure 1: Phase, CK, ER and HER2 staining for ER-positive cell line (MCF-7), HER2-positive cell line (SK-Br-3) and 4 patients with 4 different subtypes

Figure 2: Frequency distribution of the number of DTCs detected per patient (n = 54)


36th Annual San Antonio Breast Cancer Symposium December 10 – 14, 2013 • Dr. med. Bernadette Jaeger • Department of Gynecology and Obstetrics • University of Ulm • Germany This presentation is the intellectual property of the author. Contact at bernadette.jaeger@uniklinik-ulm.de for permission to reprint and/or distribute.

рТ pN Histologi Histologi Estrogen status Progeste status HER2 sta Table 1: Patient characteristics.

Discordance of the ER- and HER2-Status on Disseminated Tumor Cells Compared to the Primary Tumor in Patients With Early Breast Cancer

Bernadette AS Jaeger¹, Charlotte Finkenzeller², Carolin Bock², Leonie Majunke², Julia Jueckstock², Ulrich Andergassen², Julia Neugebauer², Aurelia Pestka², Thomas Friedl¹, Udo Jeschke², Wolfgang Janni¹, Sophie Doisneau-Sixou^{2, 3} and Brigitte Rack²

	pre	15 (27.8%)			
isal status	post	39 (72.2%)			
	pT1b	6 (11.1%)			
	pT1c	23 (42.6%)			
	pT2	18 (33.3%)			
	рТ3	7 (13.0%)			
	pN0	34 (63.0%)			
	pN1	10 (18.5%)			
	pN2	3 (5.6%)			
	pN3	5 (9.3%)			
	n/a	2 (3.7%)			
	G1	5 (9.3%)			
ical grading	G2	31 (57.4%)			
	G3	18 (33.3%)			
	ductal	40 (74.1%)			
ical type	lobular	10 (18.5%)			
	other	4 (7.4%)			
receptor	negative	12 (22.2%)			
	positive	42 (77.8%)			
eron receptor	negative	20 (37.0%)			
	positive	34 (63.0%)			
atus	negative	48 (88.9%)			
	positive	6 (11.1%)			

Α		DTC		
	ER status	only ER-negative DTCs (%)	at least one ER- positive DTC (%)	Total (%)
Tumor	ER negative (%)	6 (11)	6 (11)	12 (22)
Tumor	ER positive (%)	8 (15)	34 (63)	42 (78)
	Total (%)	14 (26)	40 (74)	54 (100)*
		DTC		
В	HER2 status	only HER2-negative	at least one HER2-	Total (%)
		DTCs (%)	positive DTC (%)	
_	HER2 negative (%)	DTCs (%) 26 (48)	positive DTC (%) 22 (41)	48 (89)
Tumor	HER2 negative (%) HER2 positive (%)	, , ,	•	. ,

Table 2: Association between ER-(A) and HER2-(B) status of PT and DTC. * p = 0.031 (Chi-Square-test). ** p = 0.56 (Chi-Square-test).

Primary tumor	DTC status	1 DTC profile			2 DTC profiles		3 DTC profiles		4 DTC profiles		
	ER+/HER2-	+	-	-	-	+	-	-	+	+	+
	ER+/HER2+	-	+	-	-	-	+	-	+	-	+
	ER-/HER2-	-	-	+	-	+	+	+	+	+	+
	ER-/HER2+	-	-	-	+	-	-	+	-	+	+
ER+/HER2-	n	2	1	5		13	1	2	2	4	8
(n = 38)	%	5.3	2.6	13.1		34.2	2.6	5.3	5.3	10.5	21.1
ER+/HER2+	n			1		2					1
(n = 4)	%			25.0		50.0					25.0
ER-/HER2-	n			3	1	3		1		1	1
(n = 10)	%			30.0	10.0	30.0		10.0		10.0	10.0
ER-/HER2+	n			1						1	
(n = 2)	%			50.0						50.0	
Total	n	2	1	10	1	18	1	3	2	6	10
(n = 54)	%	3.7	1.9	18.5	1.9	33.3	1.9	5.5	3.7	11.1	18.5

Table 3: Combined ER/HER2-status of DTCs and association with the ER/HER2-status of the PT.

Results

The median number of DTCs was 13 (range 1-95; total number of DTCs detected: 1082; see figure 2). 40 (74%) of the pts had at least one ER-positive (pos) DTC, 24 (44%) at least one HER2-pos DTC, 14 (26%) at least one ER-pos/HER2-pos DTC, and 50 (93%) at least one ER-negative/HER2-negative (neg) DTC, while 10 (19%) pts had only ER-neg/HER2-neg DTCs.

The concordance rate between ER-status on DTCs and PT was 74%. Pts with an ER-pos PT were significantly more likely to have at least one ER-pos DTC (34 out of 42) than pts with an ER-neg PT (6 out of 12; Chi-square test, $\chi^2 = 4.66$, p = 0.031). 39 (93%) of the 42 pts with ER-pos PT had at least 1 ER-neg DTC (see table 2A).

The concordance rate between HER2-status on DTCs and PT was 52%. The probability of having at least one HER2-pos DTC was not related to the HER2-status of the PT (Chi-square test, $\chi 2 = 0.34$, p = 0.56). 22 (46%) of the 48 pts with a HER2-neg PT had at least one HER2-pos DTC. All of the 6 pts with a HER2-pos PT had at least one HER2-neg DTC (see table 2B).

7 out of 10 pts with a triple-neg PT had at least one DTC pos for ER, HER2 or both. Further the heterogeneity of the ER- and HER2expression on DTCs compared to the PT for different DTC counts was evaluated. We detected all possible combinations of ER- and HER2experssion on DTCs regardless of the respective status of the PT (for details refer to table 3).

Conclusions

Our study confirms that the ER- and/or HER2-status on DTCs may differ compared to the PT. This discordance could be especially important for pts with a triple-neg PT and ER-pos or HER2-pos DTCs, since they might respond favorably to an endocrine or HER2-targeted therapy. On the other hand, the presence of ER-neg or HER2-neg DTCs in pts with ER-pos or HER2-pos PT might explain some of the failures of adjuvant endocrine or HER2 targeted therapy.

Acknowledgment

We would like to thank all patients for participating at this study and donating their BM samples for research purposes.

KLINIKUM

DER UNIVERSITÄT MÜNCHEN

